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SUMMARY 

 

 This report presents a series of calculations made by using the MIT Photonic Bands 

computer program to resolve the band structures or dispersion relations associated with a series 

of 2D and 3D photonic crystal lattices. We emphasize the development of techniques for drafting 

code input to allow the solution of more complicated crystal lattices that may not be easily 

described with normal code syntax. Due attention is paid to the minimal surface representation of 

photonic crystals and how it relates to code expressions drafted using intrinsic code syntax. A 

validation problem is also solved; the results are compared with archival data for this face-

centered cubic crystal. 
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1.0 INTRODUCTION 

 

 This technical report is intended to present the results for a series of practical, 

computational problems for the MIT Photonic Bands (MPB) computer program. MPB is 

designed to solve Maxwell’s equations for electromagnetic wave propagation in photonic 

crystals. MPB solves this system of vector equations as a Hermitian eigenproblem using the 

plane wave approximation.[1,2] In its standard mode of operation, MPB calculates dispersion 

relations for a chosen photonic crystal. A dispersion relation is a function of the form )(k


  , 

where   is the angular frequency for the light wave and k


is the wave vector. The locus of k


 is 

delineated by the irreducible Brillouin zone (IBZ) for the unit cell of the lattice for the photonic 

crystal.[2] A dispersion relation can be computed for each “band” of electromagnetic (E/M) 

propagation. The term band, in this case, is synonymous with the concept of a “mode” of 

structural vibration. It is effectively a stationary shape for the electromagnetic wave defined in 

the particular band. Also, each band is generally confined to a specific, finite interval of 

frequencies, e.g., [ω1 , ω2] for the entire range of wave vectors designated for the IBZ.[2] 

 

 MPB is a computer program that is widely used by the scientific community. It performs 

very well in the computation of photonic bands. Yet, MPB does require that its user acquire a 

significant amount of skill, especially when setting up problems that depart from the examples 

provided in the documentation. A principle reason for the learning curve is that MPB uses a 

flexible scripting language called “Scheme” for its input files.[4] For legacy programmers who 

have teethed on compilers like FORTRAN and C, Scheme is an acquired taste. This fact stands 

as partial motivation for the creation of this report. Rather than a compiler-based structure, 

Scheme relies upon an interpreter. There are many such interpreters, but MPB (and the CTL 

control language) rely upon GNU Guile, a powerful UNIX-based Scheme interpreter.[5] 

 

 Photonic crystals are comprised of periodic distributions of dielectric material. In order to 

solve for the band structure of a chosen crystal, the spatial distribution of dielectric material must 

be input into MPB as must its lattice description. The lattice description takes the form of a set of 

basis vectors; the lengths of these vectors are based upon a lattice constant, the fundamental unit 

of distance on the crystal lattice.[6] These items are easily input into MPB by using Scheme or 

CTL (MPB-specific additions to Scheme) syntax. The spatial distribution of dielectric material 

can be more complicated to code. Simple geometric figures such as circles, cylinders, rectangular 

boxes and ellipsoids can be easily described by intrinsic Scheme syntax already programmed 

into MPB.[6] If a geometry is not represented by an intrinsic function, it can be much more 

difficult to program into MPB. A means for accomplishing this task is also a subject of this 

report. In particular, we address the representation of a so-called minimal surface in MPB. More 

importantly, we show that our description of the minimal surface is correct and produces the 

correct dispersion relation. 

 

 A final issue of interest is the validation of MPB for photonic crystals of interest. We do 

not question the fact that MPB is completely validated, i.e., that it produces the correct physical 

output for a properly described photonic crystal. Yet, it is important to see that MPB, when 

operated by the novice user, produces the correct output for specific photonic crystals. In this 

case, we choose a photonic crystal of particular interest to us; compute the dispersion relation, 

and compare MPB’s results to those in the archival literature. 
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 This report is organized as follows. Section 2 provides detailed descriptions of the test 

problems we have selected for bandgap analysis. A significant amount of attention is paid to the 

crystal lattice configurations and to the geometric distributions of dielectric material. We also 

discuss the relationship between the MPB’s intrinsic syntactical descriptions of geometry and the 

interpretation of geometry via minimal surfaces. Section3 presents the results of our MPB 

analyses along with attendant band structure comparisons as proof of the validity of our 

modeling approach. Basic conclusions emerging from this work are discussed in Section 4 along 

with comments regarding the future usability of MPB for our continuing study of photonic 

crystals. 
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2.0 METHODS, ASSUMPTIONS AND PROCEDURES 

 

 In order to determine the dispersion relations or band diagrams for a photonic crystal, a 

Hermitian eigenproblem must be solved by numerical methods. Given that this problem and the 

algorithms used to solve it are thoroughly documented elsewhere, these discussions are omitted 

from this report. Interested readers are referred to References 2, 3 and 7. Rather than a 

presentation of theory, this section describes the photonic crystal configurations that we find 

interesting. Moreover, we include many details on the distribution of dielectric material for each 

crystal with a lot of emphasis on how it is represented in MPB. 

 

2.1 The 2D Offset Square Dielectric Vein Lattice 

 

 In our early investigations of photonic bandgaps, we examined the 2D square dielectric 

vein lattice.[7] This lattice is described by the two orthogonal vectors in the x and y Cartesian 

directions. This lattice renders a simple checkerboard pattern as illustrated in Figure 1. The veins 

in the lattice are made of dielectric material while air fills the square voids in the lattice. We have 

noted that while band gaps are observed for high contrast dielectric ratios, no gaps are observed 

for low contrasts say, for dielectrics such as chitin. General curiosity motivates us to examine a 

similar lattice where the “rows” of air cells are offset from one another rendering a “brick-like” 

pattern as is shown in Figure 2. Here, the lattice vectors are oblique and non-orthogonal; in fact, 

they may be written as 
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The reciprocal lattice vectors are 
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For our purposes, the parameter β is chosen such that 0 < β < 1. 

 

 
Figure 1. The square dielectric vein lattice. Dark lines indicate dielectric material; the white voids contain air 
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Figure 2. The square brick dielectric vein lattice; square regions are filled with air; the remainder of the 

lattice is filled with dielectric material 

 

For the brick lattice, the width of a dielectric vein is designated as 0.2a, where a is the lattice 

constant.  As is shown in Figure 2, this lattice is offset by half the width of one square air cell; 

this case corresponds to a β value of ½. Accordingly, the Brillouin zone (BZ) can be graphed as 

is shown in Figure 3; plot 3(a) is for β = ½ while 3(b) is for the case where β = 3
1 .[8] To 

complete the description of this lattice, symmetry points are labeled around the irreducible 

Brillouin zone (IBZ) for these lattices.[3] We have attempted to conform to the labeling 

convention when possible. In this report, we compute dispersion relations for β equal to ½, 3
1  

and ¾. For the case where β = ¾, the BZ has the shape of a left/right mirror image of Figure 3(b), 

so its graph is omitted from this report. Note that we use the term “offset” in the caption of 

Figure 3. This term refers to brick lattices that do not have vein attachments at the air cell 

midpoints (when β ≠ ½). 

 

 
Figure 3. Brillouin zones (BZ) for offset square vein dielectric lattices. (a) for β = ½ (b) for β = 3

1 . Points of 

high symmetry are labeled around the irreducible Brillouin zone (IBZ) 
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2.2 The Diamond Minimal Surface 
 

 The diamond crystal lattice is a well established test case for MPB. In this case, we have 

a set of dielectric spheres, oriented in the diamond configuration, immersed in air. Naturally, 

these spheres form a surface in a supercell. We may use a minimal surface to represent the 

collective surface for the dielectric spheres.[9] The equation for the minimal diamond surface is 

 

                                       tYXZYXZ  )cos()sin()sin()cos(                                           (3) 

 

where 

 

                             10
222

 zyx
a

z
Z

a

y
Y

a

x
X ,,,;;


 

 

For this configuration, the unit cube contains the supercell. The distribution of dielectric material 

in the supercell is given by the use of (3), albeit in a slightly different form, i.e., let 

 

                               )cos()sin()sin()cos(),,( YXZYXZZYXf                                    (4) 

 

Then the dielectric permittivity is set according to the formula 

 

                                             









tZYXf

tZYXf

air

dielectric

),,(,

),,(,




                                                         (5) 

 

The parameter t controls the volume fraction of dielectric material in the supercell. The 

relationship between dielectric volume fraction and t is shown in Figure 4. A direct comparison 

can be made between the diamond configurations as described by discrete spheres (MPB 

intrinsic syntax) and by the minimal surface description (equations 3 through 5) if we note that  

 

 
Figure 4. Plot of dielectric volume fraction versus minimal surface parameter t for the diamond configuration 
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there is a relationship between dielectric volume fraction for the minimal surface and the radius 

of the discrete dielectric spheres. This relationship is shown in Figure 5. On this basis, we can 

plot iso-surface contours of the dielectric function for both the discrete spheres (MPB intrinsic 

syntax) and for the minimal surface. These plots are shown in Figure 6 for the dielectric volume 

fraction of 0.19.  

 

 
Figure 5. Plot of dielectric volume fraction versus the discrete spherical radius for the diamond configuration 

 

 
Figure 6. Iso-surface plots of dielectric permittivity (based upon equations) for (a) the discrete sphere model 

and (b) for the minimal surface model of the diamond configuration with 19% volume fraction 

 

 Both of the plots shown in Figure 6 are generated by programming equations for the 

dielectric distributions and graphing the resulting data. Recall that we know the equations and 
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point locations for the spheres in the discrete model. Obviously, equations 3 through 5 are used 

for the minimal surface plot. Comparing Figures 6a and 6b is not an easy task since (i) the 

minimal surface is continuous, unlike the discrete model, and (ii) the post-processor contours 

differently around the void regions. In any case, the triangular orientation of the dielectric 

spheres is reflected. In 6b, the spheres exist at the red clusters in between the white voids. One 

can also see dielectric material representing neighboring spheres at the supercell corners. An 

interesting and important fact is that the minimal surface represents a fully connected dielectric 

field unlike the discrete model. Figure 7 contains plots of the same dielectric field, but in this 

case, the plots are generated by post-processing the dielectric field generated by MPB. Just as is 

indicated by Figure 6, the minimal surface model captures the tetrahedral distribution of the 

 

 
Figure 7. Plots of the dielectric field generated by MPB for (a) the discrete model and (b) the minimal surface 

model for the diamond configuration at volume fraction 19% 

dielectric spheres. Again, we see that the minimal surface represents a fully connected 

distribution of dielectric material. We show these comparisons because the minimal surface must 

be explicitly coded into MPB’s control (or input) files without the benefit of intrinsic surface 

description syntax. In fact, the minimal surface must be described by writing code in the Scheme 

programming language. By using the information contained in Figures 4 and 5, we can develop 

the dielectric material distribution for a dielectric volume fraction of 30%. This distribution is 

shown in Figure 8. Although it is difficult to see, the minimal surface representation does capture 

the proper distribution of dielectric material. The underlying tetrahedral configuration is visible. 

This behavior is echoed by Figure 9, plots for the same dielectric distribution generated by MPB 

(and its subsystems). The use of programmed minimal surfaces (or other non-intrinsic 

geometries) is very important for future applications of MPB. Scheme programming segments 

can be written to describe complex geometries that cannot be scripted in MPB control input 

syntax. A possible example of this idea is the gyroid lattice.[10] A minimal surface equation 

exists for the gyroid, but a means for representing the gyroid in terms of MPB intrinsic syntax is  
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Figure 8. Iso-surface plots of dielectric permittivity (based upon equations) for (a) the discrete sphere model 

and (b) for the minimal surface model of the diamond configuration with 30% volume fraction 

 
Figure 9. Plots of the dielectric field generated by MPB for (a) the discrete model and (b) the minimal surface 

model for the diamond configuration at volume fraction 30% 

not currently clear.[11,12] Dispersion relations are computed for both the discrete and minimal 

surface diamond configurations discussed above. Results for these configurations are presented 

and discussed in Section 3. 
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2.3 Example of a Biological Photonic Crystal 

 

 A final thrust of this report is to validate, in some sense, the accuracy of an MPB solution 

for a real-world photonic crystal. Many such crystals can be found in nature, particularly in the 

exoskeletons of insects. One crystal that is well documented in the scientific literature comes 

from Lamprocyphus augustus, a green weevil known for its brilliant coloration.[13,14,15] This 

crystal is a relatively simple arrangement of dielectric and air on the face-centered cubic (FCC) 

lattice. An air cylinder is placed at each lattice point in a dielectric field; the axis of each cylinder 

axis is aligned along the direction kji ˆˆˆ   (111). In this lattice, the cylinders take on a 

staggered appearance with an overall hexagonal distribution in the lateral directions. This 3D 

crystal is arranged with layers of dielectric rods alternating with layers of cylindrical air 

voids.[16] The radius and length of cylinder are given as 0.27 and 0.89, respectively, while the 

lattice constant is set at unity. The background dielectric material has a relative permittivity of 

5.29. The orientation of the air cylinders in the dielectric takes on the appearance shown in 

Figure 10. 

 

 
Figure 10. An iso-surface plot of dielectric permittivity for the 3D layered crystal consisting of cylindrical 

voids of air suspended in a background dielectric structure. The air cylinders are aligned with the vector 

kji ˆˆˆ  , i.e., direction (111)
 

The dispersion relation computed for this crystal can be compared with an archived dispersion 

relation.[15] A satisfactory comparison of these relations provides good evidence that MPB is a 

useful tool for computing the band structure and electromagnetic wave modes for biological 

crystals.  
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3.0 RESULTS 

 

 In this section, we present the results of dispersion relation (or photonic band) 

calculations for the test problems described in the preceding section. Since our objective is to 

prove sound our skills for setting up MPB problems, we concentrate exclusively on band 

calculations. Neither electric nor magnetic field shapes are shown here. 

 

3.1 Band Structure for the 2D Square Brick Dielectric Vein Lattice 
 

 To evaluate the effect of the geometric offset of the square “brick” lattice, dispersion 

relations are computed for β equal to 3
1 , ½ and ¾ for a dielectric permittivity value of 2.31. 

These relations are plotted in Figures 11 through 13, respectively. It is interesting to observe that 

a narrow band gap (5.58 %) exists only for β equal ½. This fact is very interesting because the  

 

 
Figure 11. Dispersion relation for the dielectric vein square brick dielectric vein lattice with β = 3

1  

 
Figure 12. Dispersion relation for the square brick dielectric vein lattice with β = ½. The yellow bar indicates 

the presence of a bandgap 
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Figure 13. Dispersion relation for the dielectric vein square brick lattice with β = 3/4 

square dielectric lattice with zero offset exhibits absolutely no band gaps for this value of the 

dielectric permittivity.[7] It seems that vein connections existing at the midpoint of the square 

cell are sufficient to force the electromagnetic field into a lower frequency range creating a band 

gap. This result was not anticipated. It does pique the interest and motivate the following 

question. Is there an optimal value of dielectric permittivity for this 2D photonic crystal? This 

question is easily answered with a little numerical effort. Consider the plot shown in Figure 14. It 

is evident that the band gap width varies smoothly over the range of dielectric permittivity 

 

 
Figure 14. Plot of percent band gap width versus dielectric permittivity resulting from a parametric study 

conducted for the offset square brick lattice with β = 0.5 

values, but the gap width peaks at 5.74% for ε = 2.8. The dispersion relation looks virtually 

identical to that shown in Figure 12, so a plot for β = 0.5, ε = 2.8 is omitted from this report. This 

band gap result is worthy of some consideration. A common practice is to build 3D photonic 

crystals from stacks of 2D crystals. In some cases, this technique may provide an easier method 

of fabrication for certain 3D photonic crystals.[16] 
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3.2 Band Structure for the Diamond Minimal Surface 

  

 The goal of this section is to show that we can utilize the minimal surface description of a 

photonic crystal in lieu of the discrete geometric description (should the latter even exist). In the 

interest of practicality, we have selected the diamond photonic crystal (see Figures 6 through 9) 

in the preceding section) as a testbed for this idea. As a brief review, the diamond structure is 

built upon the face-centered cubic (FCC) crystal lattice, and the Brillouin Zone (BZ) is a 

truncated octahedron.[3,17,18] See Appendix I for a brief discussion of this BZ. The 

methodology for this study is simple. We compute dispersion relations for both the discrete and 

minimal surface descriptions and compare them on a band per band basis. A band in this case is 

a particular relationship of the form )(k


   where ω is angular frequency (or its 

dimensionless analog), and k


 represents the locus of wave vectors (also dimensionless) around 

the IBZ. The bands are ordered in some sense, i.e., the frequencies are (on the average) lower for 

band 1 than for band 2, lower for band 2 than for band 3, and so forth. This behavior is reflective 

of what is observed in Figure 11 through 13, albeit for a different photonic crystal. Consider the 

first band for a diamond photonic crystal with a dielectric volume fraction of 0.19 as is shown in 

Figure 15. Note that a volume fraction of 0.19 corresponds to a radius of 0.178551a and a  

 

 
Figure 15. Dispersion relations for the diamond crystal structure with volume fraction 0.19 for both minimal 

surface and intrinsic MPB syntax descriptions of the first band 

minimal surface parameter t = -0.756639. The blue line represents the minimal surface while 

discrete points are plotted for the intrinsic syntax description. It is evident that the two dispersion 

relations compare favorably. Consider Figure 16, dispersion relation graphs for the second band 

computed at the same volume fraction. Again, the comparison is quite favorable. As an 

additional check, we have computed the third band (the next higher frequency locus) and 

produced Figure 17. The outcome is no different; the dispersion relations computed by using the 

diamond minimal surface and MPB’s intrinsic geometries are nearly the same. Our examination 

of the supercell geometries shown in the preceding section tends to indicate that the small 

difference observed between the dispersion relations may be due to the fact that the dielectric 
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Figure 16. Dispersion relations for the diamond crystal structure with volume fraction 0.19 for both minimal 

surface and intrinsic MPB syntax descriptions of the second band 

 
Figure 17. Dispersion relations for the diamond crystal structure with volume fraction 0.19 for both minimal 

surface and intrinsic MPB syntax descriptions of the third band 

structure for the minimal surface is fully connected throughout the lattice. Of course, the discrete 

(intrinsic MPB syntax) geometric dielectric structure is not connected (due to its use of discrete 

spherical masses of dielectric material). This fact may force the minimal surface band onto a 

slightly lower frequency locus along the outer periphery of the IBZ. It is worthwhile to verify 

this behavior for a configuration involving a higher dielectric volume fraction. Figures 18 

through 20 contain plots of the dispersion relations for bands 1 through 3, respectively, for a 

volume fraction of 0.30. This volume fraction corresponds to a dielectric sphere radius of 

0.207599a and a minimal surface parameter t = -0.5.  As is evidenced by these plots, there is a 

favorable comparison between the two solutions for each band. On the whole, the difference 

between the two solutions decreases as the order of the band increases. This behavior seems 

reasonable since longer electromagnetic waves are more likely to sense the difference in the 

dielectric distribution for the crystal. That is to say, the concentrated regions of dielectric 

material are slightly smaller for the minimal surface model than for the discrete spheres model.  
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Figure 18. Dispersion relations for the diamond crystal structure with volume fraction 0.30 for both minimal 

surface and intrinsic MPB syntax descriptions of the first band 

 

 
Figure 19. Dispersion relations for the diamond crystal structure with volume fraction 0.30 for both minimal 

surface and intrinsic MPB syntax descriptions of the second band 

For the minimal surface model, this characteristic provides connectivity everywhere while 

preserving the dielectric volume fraction. A long wavelength electromagnetic field cannot as 

effectively concentrate its energy effectively in these smaller dielectric volumes. Hence, we 

observe larger differences between bands existing at lower frequencies. 
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Figure 20. Dispersion relations for the diamond crystal structure with volume fraction 0.30 for both minimal 

surface and intrinsic MPB syntax descriptions of the third band 

 

3.3 Band Structure for the Biological Photonic Crystal 

 

 The results in this section confirm that MPB is suitable for computing the band structure 

for biological photonic crystals. The only caveat for this claim is that a user must be capable of 

correctly coding the crystal structure for MPB input. In this case, we have used MPB to 

determine the band structure for the stacked (or layered) dielectric rod and air-cylinder 3D 

 

 

 
Figure 21. Dispersion relation for the layered photonic crystal consisting of air cylinders suspended in a 

dielectric material with relative permittivity of 5.29 
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Figure 22. Dispersion relation for the layered photonic crystal reprinted from Reference [15] 

photonic crystal described in Section 2.3. The first five bands are calculated for a resolution 

value of 32 pixels. The computed band structure (dispersion relation) is shown in Figure 21. As 

you can see, this configuration has a small photonic band gap (between bands 2 and 3) indicated 

by the lengthy gray box drawn on the front of the graph. The band gap width computed by MPB 

is 5.39%. The referenced source reports a width of 5% for the gap existing between bands 2 and 

3.[15] This data indicates good agreement between the solutions. The major difference between 

the two solutions is that our band structure predicts a sharp reduction in frequency for bands 1 

and 2 near the symmetry point we designate as “U” (symmetry point U’ in [15]). It follows that a 

truly exact comparison is difficult to make since we have neither the author’s data tables nor the 

actual BZ symmetry point listing used in the reference. To aid in making a visual comparison, 

the archived dispersion relation is shown in Figure 22. Again, the agreement is quite good up to 

the detailed arrangement of symmetry points. Both the Cartesian coordinates of the symmetry 

points as well as the resolution of the archived results are unknown. 
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4.0 CONCLUSIONS 

 

 This report has presented results for a series of practical bandgap calculations made by 

using the MIT Photonic Bands (MPB) electromagnetic wave solver. Dispersion relations have 

been calculated for a series of 2D and 3D photonic crystals. The two-dimensional crystal 

addressed is the square brick dielectric vein lattice. Related to the standard square dielectric vein 

lattice, the brick configuration has oblique lattice vectors spanning an acute angle instead of the 

right angle used for the standard case. For lattice vectors spanning 45˚, the brick lattice has a 5% 

bandgap for a relative permittivity of 2.31. This result presents a stark contrast to the standard 

case that has no band gap in this permittivity range. The brick lattice may be worthy of 

consideration for the creation of stacked 3D photonic crystals. 

 

 The second test problem addressed by the report surrounds testing different types of input 

for the diamond crystal lattice. This lattice is commonly analyzed by MPB through the use of its 

intrinsic syntax. That is to say, MPB syntax can be used to describe a diamond lattice composed 

of spherical masses of dielectric material (or the associated inverse lattice). However, coding 

more complicated distributions of dielectric material is a matter of concern. It may not be 

possible to describe other crystals of interest in terms of simple geometric shapes. For this 

reason, we have carefully coded the diamond lattice in the form of minimal surface equations. As 

it happens, we can describe a wide array of crystal lattices in mathematical form. Complicated 

dielectric functions can be entered into MPB by bypassing MPB’s intrinsic syntax and coding the 

description in the “Scheme” programming language, the interpreter that MPB input is based 

upon. We have accomplished this for the diamond lattice using both the intrinsic syntax and the 

minimal surface input. The band structures obtained show very good agreement with one 

another, and we have proved an important concept. We can code dielectric structures directly 

into MPB as long as we can obtain a mathematical description for the distribution of dielectric 

material. 

 

 In the way of code validation, we have solved for the band structure associated with a 3D 

photonic crystal of interest. We have coded the face-centered cubic crystal structure for an 

exoskeletal scale from Lamprocyphus augustus, a green weevil, into MPB and extracted its band 

structure for an expanded Brillouin Zone. This result is compared with the archived band 

structure accepted by the scientific community. Our prediction shows very good agreement with 

the accepted dispersion relation. This is not surprising since MPB is essentially the academic 

standard tool for the calculation of photonic bandgaps. We have significant confidence in MPB’s 

abilities, but there is a noticeable learning curve associated with its use. Educating the user in 

building MPB input and in interpreting MPB output is a task of significance mass. The exercises 

described here have provided us with reasonable confidence in applying MPB to study photonic 

crystals of greater complexity. 

 

 The lack of experimental photonic bandgap data is worthy of comment. To date, no 

references containing experimentally obtained photonic bandgap plots have been found. One 

empirically inferred bandgap has been located, but the associated plot is really cast in terms of 

reflectivity.[13] Hence, this result is not a dispersion relation. Further investigation has shown 

that the authors of this reference actually used MPB in order to obtain their dispersion relation. 

There are procedures existing in the archival literature for the experimental measurement 
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(perhaps through indirect means) of dispersion relations (or band structures) for photonic 

crystals.[20] It is hoped that through the implementation of these procedures or through new 

methods we will soon be able to experimentally determine photonic band structures. 
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Appendix I: Brillouin Zone for the Face-Centered Cubic Crystal Lattice 
 

 The face-centered cubic (FCC) crystal lattice is a classic Bravais lattice that forms the 

basis of the diamond structure. For completeness, a brief description of the FCC lattice is 

presented here. Naturally, there are three lattice vectors for the unit cell. In terms of the Cartesian 

unit vectors, these basis vectors are given as 
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The lattice constant is denoted as “a”, and the length of each lattice vector is 1/ 2  for a 

supercell consisting of the unit Cartesian cube. It is relatively easy to show that the basis vectors 

for the reciprocal lattice are: 
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Strangely enough, the reciprocal basis vectors are aligned with the lattice vectors for a body-

centered cubic (BCC) crystal structure. The reciprocal basis allows the Brillouin zone to be 

defined. For the FCC lattice, the Brillouin zone is characterized as a truncated octahedron. A 

truncated octahedron is composed of two four-sided pyramids joined at the base and then 

truncated by cutting away all six corners. This Brillouin zone (BZ) is shown in Figure 23 along 

with its high symmetry points. In this case, the BZ has been augmented with additional 

symmetry points to help in bandgap studies. The basis symmetry points  are:   - the BZ center,  

L - the center of a hexagonal face, X - the center of rectangular face, W – a corner, U – the center 

of a side adjoining hexahedral and square faces, K – the center of a side adjoining two 

hexahedral faces. In reciprocal space ),,( zyx kkk , these points have the coordinates listed below 
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Figure 23. Brillouin zone for face-centered cubic lattices 

 

Coordinates of these points in the Cartesian or physical lattice can be retrieved by using the 

transformation 

 

                                            ),,(),,( yxzxzy kkkkkk
a

zyx 
4

                                        (13) 

 

With the careful use of vector algebra and Figure 23, the coordinates of all points (symmetry 

points and otherwise) comprising the BZ can be determined. It should be noted that the BZ axes 

need not be aligned in the manner show. In some cases, one may choose to align say, the zk  axis 

normal to a hexagonal face. 
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Appendix II: CTL File for the Diamond Minimal Surface 
 

 The ctl file for the diamond minimal surface required some effort and research time, so it 

is worthy of archiving. The mathematics of the minimal surface had to be translated into a series 

of Scheme expressions. These expressions had to work well with the rest of the MPB input 

syntax. For the crystal with volume fraction 0.19, the ctl file is provided below. 

 

; diamond lattice - surface equation method test 

; t = -0.756639 <=> phi = 0.19 

; 

(define pi 3.141592654) 

(define a  1.0) 

(define twopioa (/ (* 2 pi) a)) 

(define fr 0.0) 

(define t -0.756639) 

(define epsc 2.45) 

(define epsa 1.0) 

(define sx 0.0) 

(define cx 0.0) 

(define sy 0.0) 

(define cy 0.0) 

(define sz 0.0) 

(define cz 0.0) 

 

(define (px p) (vector3-x (lattice->cartesian p))) 

(define (py p) (vector3-y (lattice->cartesian p))) 

(define (pz p) (vector3-z (lattice->cartesian p))) 

 

(define (eps-func p) 

        (set! sx (sin (* twopioa (px p)))) 

        (set! cx (cos (* twopioa (px p))))  

        (set! sy (sin (* twopioa (py p))))  

        (set! cy (cos (* twopioa (py p))))  

        (set! sz (sin (* twopioa (pz p))))  

        (set! cz (cos (* twopioa (pz p))))  

        (set! fr (+ (* cz (+ (* sx cy) (* cx sy))) 

  (* sz (+ (* cx cy) (* sx sy))))) 

        (make dielectric (epsilon 

  (if (> fr t) epsa epsc )))) 

 

(set! geometry-lattice (make lattice 

      (basis-size (sqrt 0.5) (sqrt 0.5) (sqrt 0.5)) 

      (basis1 0 1 1) 

      (basis2 1 0 1) 

      (basis3 1 1 0))) 
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(set! k-points (interpolate 4 (list 

      (vector3 0 0.5 0.5)                   ; X 

      (vector3 0 0.625 0.375)           ; U 

      (vector3 0 0.5 0)                      ; L 

      (vector3 0 0 0)                         ; Gamma 

      (vector3 0 0.5 0.5)                   ; X 

      (vector3 0.25 0.75 0.5)            ; W 

      (vector3 0.375 0.75 0.375))))  ; K 

 

(set! default-material (make material-function 

 (material-func eps-func))) 

 

 

(set-param! resolution 32) 

(set-param! mesh-size 3) 

(set-param! num-bands 3) 

 

(run) 
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